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Problem Statement 

For the purpose of this project, we are interested in utilizing the 2-Dimensional (2D) 

FDTD method to solve Maxwell’s equations numerically. There are two different derivations 

for the 2D FDTD method which are the transverse electric field set of equations (TE), and the 

transverse magnetics field (TM) equations. For the TM mode of equations, the magnetic 

fields are defined in the X and Y directions, and the electrical field in the Z direction. As for 

the TE mode of equations, the electrical fields are defined in the X and Y directions, and the 

magnetic field in the Z direction. The aim of this project is simulating a TM mode set of 

equations under different situations. 

The TM mode equations are a set of 3 first order partial differential equations that will 

be solved using central difference in both the spatial and time domains to solve for the 

magnetic field in the x and y directions and the electrical field in the z direction. 3 

simulations were performed utilizing the TM mode sets of equations. The first simulations 

involve simulating a point source of a set frequency and visualizing how the Electric field in 

the Z direction changes with respect to time. In this first simulation, the discontinuity that 

results from having a discrete solution space presents itself as a perfect reflective boundary 

that reflects back all fields that come in contact with it. Thus, this gives rise to the need for 

revising the derived equations. The revision is done with the addition of perfectly matched 

layers on each of the solution boundaries along the x and y directions. The added boundaries 

perform the task of meeting the desired absorptive boundary conditions by minimizing the 

magnitude of reflections that occur when the fields hit the boundaries. This is visualized in 

the second simulation by simulating the point source again with the updated set of equations. 

The final simulation involves simulating a horn antenna made of a conductive surface to 

control how the electromagnetic radiation spreads. In addition, a box with conductive 

properties was also added to simulate how the radiation bounces back from it. Such a box is 

known as a lossy propagation medium as some of the electromagnetic radiation is either 

scattered or absorbed instead of directly passing through it.  

  



Introduction 

Out of the four fundamental forces in nature, namely strong, weak, electromagnetic, 

and gravitational, the electromagnetic force has the greatest impact on technology. Among the 

three ways to forecast electromagnetic phenomena, namely experiment, analysis, and 

computation, computation is the most recent and rapidly developing method. Over the past 

decade, computational electromagnetics (CEM) has undergone remarkable progress, and it 

now provides extremely precise forecasts for several electromagnetically related problems, 

such as estimating the radar cross-section of targets and designing antennas and microwave 

devices with high accuracy [1].   

Computational Electromagnetics is a field of electromagnetics specialized in solving 

Maxwell’s equations computationally. Maxwell’s equations are a set of fundamental 

equations that describe the interactions between electrical fields, magnetic field, and the 

mediums through which the combined electromagnetic field propagates through. 

Furthermore, Maxwell’s equations are made up of 4 base equations that form the basis of 

classical electrodynamics. Computational Electromagnetics is a field of study involved with 

discretizing maxwell’s equations and solving their different forms numerically. Multiply 

methods were created to perform this task such as the finite difference time domain method 

(FDTD), the finite difference frequency domain method (FDFD), the finite element method 

(FEM), and the method of moments (MoM).  

Presently, there are two main classifications of commonly utilized CEM techniques. 

The first category is composed of differential equation (DE) methods, while the second 

category is made up of integral equation (IE) methods. Both DE and IE solution methods are 

rooted in the application of time-domain Maxwell's equations and the associated boundary 

conditions related to the problem that needs to be solved. In general, IE methods offer 

estimates for IEs using finite sums, while DE methods offer approximations for DEs in the 

form of finite differences. In general, numerical electromagnetics analysis has mainly been 

studied in the frequency domain, assuming time-harmonic behavior. This preference for the 

frequency domain approach was because of its capability of deriving analytical solutions to 

canonical problems, which served as a vital step in validating numerical results before 

implementing novel numerical techniques to obtain data for practical purposes. Additionally, 

the frequency-domain approach was favored as the hardware used in previous years for 

experimental measurements primarily supported this type of analysis [1].  



Advanced computational resources have led to the development of more powerful 

time-domain CEM models. One popular time-domain approach is Differential Equations 

methods, which is favored for its simplicity and physical insight. Over the years, the Finite-

Difference Time-Domain (FDTD) method became a widely used technique in CEM 

applications for antenna and microwave filter designs and analyzing the radar cross-section of 

3D targets along with calculating the interaction of electromagnetic waves with bodies of 

different shape and different material. Additionally, the FDTD method has become a highly 

popular method of solving Maxwell's equations. It is based on simple formulations that 

eliminate the need for complicated asymptotic functions or Green's functions. Although the 

FDTD method solves problems in time, it can provide a vast frequency-domain response 

range using Fourier transform. It is capable of handling composite geometries that comprise 

various materials, including nonlinear, frequency-dependent, magnetic, dielectric, and 

anisotropic materials. With these features, the FDTD method has emerged as the most 

popular technique for many microwave devices and antenna applications in CEM and offers a 

more comprehensive understanding of underlying problems [2]. 

Maxwell Curl Equations 

Maxwell's equations are a set of four equations that describe the behavior of electric 

and magnetic fields and how they relate to each other. The starting point for the construction 

of an FDTD algorithm is Maxwell’s time-domain equations. The differential time-domain 

Maxwell’s equations needed to specify the field behavior over time are:  

 

∇ × 𝐻⃗⃗  =
∂𝐷⃗⃗ 

∂𝑡
+ 𝐽 ,

∇ × 𝐸⃗  = −
∂𝐵⃗ 

∂𝑡
− 𝑀⃗⃗ ,

∇ ⋅ 𝐷⃗⃗  = 𝜌𝑒

∇ ⋅ 𝐵⃗  = 𝜌𝑚

 

Where E is the electric field strength vector in volts per meter, D is the electric displacement 

vector in coulombs per square meter, H is the magnetic field strength vector in amperes per 

meter, B is the magnetic flux density vector in Webers per square meter, J is the electric 

current density vector in amperes per square meter, M is the magnetic current density vector 



in volts per square meter, Pe is the electric charge density in coulombs per cubic meter, and 

Pm is the magnetic charge density in webers per cubic meter [2]. 

FDTD Applications 

Impedance sheets 

In Radar Cross Section (RCS) scattering methods, thin sheets of resistive or dielectric 

material are often used. These sheets are also major components in waveguide and antenna 

designs and analysis. The analysis of such sheets can be simplified by using sheet 

impedances, which can conveniently and accurately model them in Finite-Difference Time-

Domain (FDTD) calculations. Various approximate boundary conditions have been studied 

for thin sheets and layers. These conditions are applicable when the sheet's thickness is 

smaller than the free space wavelength, allowing them to be represented as an electric current 

sheet. If the sheet is mainly conductive, its impedance will be resistive, such as in the case of 

resistance cards. A lossless dielectric sheet will have purely reactive impedance, whereas 

generally speaking, the sheet impedance will be complex. Thin sheets are easily characterized 

by a discontinuity in the tangential magnetic field on either side, but no discontinuity in the 

tangential electric field, allowing the sheet current to be expressed in terms of an impedance 

multiplied by the electric field. These conditions imply that the perpendicular electric field's 

impact on the sheet can be disregarded, ensuring a single-valued behavior of the electric field. 

In summary, thin sheet analysis in RCS scattering methods and waveguide/antenna designs 

can be simplified by using sheet impedances. With the sheet impedance's accurate modelling, 

FDTD calculations can offer reliable solutions for these thin sheets [2]. 

The sheet impedance can be defined as the following:  

 

With  

 

where Ys is the sheet admittance, Zs is the sheet impedance, sigma and er are the conductivity 

and relative permittivity of the sheet material, T is the sheet thickness, and 𝜀𝜊is the free space 

permittivity. 



 Furthermore, let's explore the integration of this approximation into the FDTD 

technique. To utilize the surface impedance approximation, the impedance sheet thickness must 

be much smaller than the wavelength in free space. Typically, in FDTD computations, the 

FDTD cell size should be around 1/10 wavelength or less for reasonably accurate results, so 

this condition is automatically met. One can approximate an infinitesimally thin perfectly 

conducting plate as one FDTD cell thick to achieve good results. A similar approach can be 

used for impedance sheets by setting the thickness T as the FDTD cell thickness and adjusting 

the conductivity and/or relative permittivity in the FDTD calculations to achieve the desired 

sheet impedance. The FDTD cell thickness is only used to determine the conductivity and 

relative permittivity of the FDTD electric field location, which is important for approximating 

the desired sheet impedance [2]. 

Ground Penetrating Radar  

 Ground penetrating radar (GPR) is a geophysical tool using high frequency radio waves 

to probe inside a medium. In order to observe through opaque objects or beneath surfaces, it 

utilizes wide-band electromagnetic pulses. As engineering and environmental geophysics have 

developed over the recent years, GPR has taken on increasing value. It is now commonly used 

in a variety of studies, including bedrock structure detection, high building foundation 

evaluation, shallow soil or rock layer’s structure, underground water level detection, water 

pollution mapping, and other areas of study. Wave propagation in the subsurface material is 

more complicated than that in the air because of the physical characteristics of the geological 

material are varied and the electromagnetic attenuation in a subsurface material is greater than 

that in the air. For better comprehension and interpretation of GPR detection, it is effective to 

examine the radar wave propagation in such a material by utilizing FDTD technique. FDTD 

has been used to simulate wave propagation, scattering, and antenna radiation linked to GPR 

as a potent computational electromagnetic tool [3]. 

  



Theoretical Derivation 

The Finite-Difference Time-Domain (FDTD) method is a numerical technique used to solve 

the Maxwell's equations for electromagnetic problems. The FDTD method is a powerful tool 

for solving electromagnetic problems in complex geometries and materials and is widely used 

in the design of electromagnetic devices and systems. 

The first part of making an FDTD algorithm is Maxwell's time-domain equations, which are: 

∇ × 𝐻⃗⃗  =
∂𝐷⃗⃗ 

∂𝑡
+ 𝐽 ,

∇ × 𝐸⃗  = −
∂𝐵⃗ 

∂𝑡
− 𝑀⃗⃗ ,

∇ ⋅ 𝐷⃗⃗  = 𝜌𝑒

∇ ⋅ 𝐵⃗  = 𝜌𝑚

 

where 𝐸⃗  is the electric field strength, 𝐷⃗⃗  is the electric, 𝐻⃗⃗  is the magnetic field, 𝐵⃗  is the 

magnetic flux density, 𝐽  is the electric current, 𝑀⃗⃗  is the magnetic current, 𝜌𝑒 is the electric 

charge density, and 𝜌𝑚 is the magnetic charge density. For our upcoming derivation, we 

assume that we are solving maxwell’s equations for a source free region such that both the  

electric charge density and the magnetic charge density are zero. 

The following constitutive relationship will supplement Maxwell’s equations. Constitutive 

relations for linear, isotropic, and nondispersive materials are: 

𝐷⃗⃗  = 𝜀𝐸⃗ ,

𝐵⃗  = 𝜇𝐻⃗⃗ ,
 

Where: 

𝜀 = 𝜀0 ≈ 8.854 × 10−12 F/m,

𝜇 = 𝜇0 = 4𝜋 × 10−7 H/m
 

2-Dimensional FDTD updating equations for TMz mode wave propagation 

To derive FDTD equations, we only need to consider the curl equations (the first two of 

Maxwell’s equations). The electric current density 𝐽  is the sum of the conduction current 

density 𝐽 𝑐 = 𝜎𝑒𝐸⃗  and the impressed current density 𝐽 𝑖 as 𝐽 = 𝐽 𝑐 + 𝐽 𝑖. Similarly, for the 

magnetic current density, 𝑀⃗⃗ = 𝑀⃗⃗ 𝑐 + 𝑀⃗⃗ 𝑖, where 𝑀⃗⃗ 𝑐 = 𝜎𝑚𝐻⃗⃗ . Here 𝜎𝑒  is the electric 



conductivity, and 𝜎𝑚 is the magnetic conductivity. However, for a source free region 𝐽 𝑖 and 

𝑀⃗⃗ 𝑖 are both zero. By making these substitutions, we arrive at these curl equations: 

∇ × 𝐻⃗⃗ = 𝜀
∂𝐸⃗ 

∂𝑡
+ 𝜎𝑒𝐸⃗ 

∇ × 𝐸⃗ = −𝜇
∂𝐻⃗⃗ 

∂𝑡
− 𝜎𝑚𝐻⃗⃗ 

 

This new formulation treats only the electromagnetic fields 𝐸⃗  and 𝐻⃗⃗  and not the fluxes 𝐷⃗⃗  and 

𝐵⃗ . Furthermore, we are only interested in the equations that specify transverse magnetic field 

propagation modes only. TMz mode propagation means that the Electric field is propagating 

in the Z direction, which directly suggests that the magnetic fields exist in the X-Y plane due 

to their inherent orthogonality. Hence, we are only interested in 𝐻𝑥, 𝐻𝑦, 𝑎𝑛𝑑 𝐸𝑧 . The derived 

Curl vector equations can be converted into six scalar equations for a three-dimensional 

space: 

∂𝐸𝑥

∂𝑡
 =

1

𝜀𝑥
(
∂𝐻𝑧

∂𝑦
−

∂𝐻𝑦

∂𝑧
− 𝜎𝑥

𝑒𝐸𝑥)

∂𝐸𝑦

∂𝑡
 =

1

𝜀𝑦
(
∂𝐻𝑥

∂𝑧
−

∂𝐻𝑧

∂𝑥
− 𝜎𝑦

𝑒𝐸𝑦)

∂𝐸𝑧

∂𝑡
 =

1

𝜀𝑧
(
∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
− 𝜎𝑧

𝑒𝐸𝑧)

∂𝐻𝑥

∂𝑡
 =

1

𝜇𝑥
(
∂𝐸𝑦

∂𝑧
−

∂𝐸𝑧

∂𝑦
− 𝜎𝑥

𝑚𝐻𝑥)

∂𝐻𝑦

∂𝑡
 =

1

𝜇𝑦
(
∂𝐸𝑧

∂𝑥
−

∂𝐸𝑥

∂𝑧
− 𝜎𝑦

𝑚𝐻𝑦)

∂𝐻𝑧

∂𝑡
 =

1

𝜇𝑧
(
∂𝐸𝑥

∂𝑦
−

∂𝐸𝑦

∂𝑥
− 𝜎𝑧

𝑚𝐻𝑧)

 

2-Dimensional FDTD updating equations with a Perfectly Matched Layer 

 

A Perfectly Matched Layer (PML) is a technique commonly used in computational 

electromagnetics to simulate the effect of an infinite medium or to absorb the electromagnetic 

waves at the boundaries of a finite simulation domain. It has proven to be the most robust 

type of absorbing boundary condition used in computational electromagnetics. 

The PML layer is a complex structure that is designed to gradually absorb the 

electromagnetic waves traveling through it, without reflecting them back into the simulation 

domain. The PML layer is anisotropic, meaning its properties are different in different 



directions, and is typically implemented as a set of additional FDTD grid points surrounding 

the computational domain. The layers add in loss in the form of both magnetic and electric 

conductivities whilst maintaining perfect impedance matching to allow the electromagnetic 

waves to pass through the PMLs whilst minimizing the magnitude of reflection back into the 

solution space. This effectively models the waves propagation into infinity instead of being 

confined in the limited solution space. 

To incorporate the PMLs in the previously derived equations, the Ez is split up into parts that 

result from the x and y components of H.  the electric and magnetic conductivities added 

have non-zero values only inside the PML layers. The electric conductivities in the PML 

layers 𝜎𝑝𝑚𝑦 & 𝜎𝑝𝑚𝑥 ,and the magnetic conductivities 𝜎𝑝𝑚𝑥 & 𝜎𝑝𝑚𝑦  are calculated such that 

the wave impedance stays the same as the electromagnetic radiation travels from the solution 

space to the PML layers such that: 

𝜎𝑝𝑒𝑧

𝜀0
=

𝜎𝑝𝑚𝑥

𝜇0
 

   
𝜎𝑝𝑒𝑧

𝜀0
=

𝜎𝑝𝑚𝑦

𝜇0
 

Incorporating these added conductivities into the previously devised equations gives rise to: 

𝜀0

∂𝐸𝑧𝑥

∂𝑡
+ 𝜎𝑝𝑒𝑥𝐸𝑧𝑥  =

∂𝐻𝑦

∂𝑥
,

𝜀0

∂𝐸𝑧𝑦

∂𝑡
+ 𝜎𝑝𝑒𝑦𝐸𝑧𝑦  = −

∂𝐻𝑥

∂𝑦
,

𝜇0

∂𝐻𝑥

∂𝑡
+ 𝜎𝑝𝑚𝑦𝐻𝑥  = −

∂(𝐸𝑧𝑥 + 𝐸𝑧𝑦)

∂𝑦
,

𝜇0

∂𝐻𝑦

∂𝑡
+ 𝜎𝑝𝑚𝑥𝐻𝑦  =

∂(𝐸𝑧𝑥 + 𝐸𝑧𝑦)

∂𝑥
.

 

  



Numerical Formulation 

In the previous chapter, we arrived at the following equations: 

∂𝐸𝑧

∂𝑡
 =

1

𝜀𝑧
(
∂𝐻𝑦

∂𝑥
−

∂𝐻𝑥

∂𝑦
− 𝜎𝑧

𝑒𝐸𝑧)

∂𝐻𝑥

∂𝑡
 =

1

𝜇𝑥
(
∂𝐸𝑦

∂𝑧
−

∂𝐸𝑧

∂𝑦
− 𝜎𝑥

𝑚𝐻𝑥)

∂𝐻𝑦

∂𝑡
 =

1

𝜇𝑦
(
∂𝐸𝑧

∂𝑥
−

∂𝐸𝑥

∂𝑧
− 𝜎𝑦

𝑚𝐻𝑦)

 

In this set, the equations are dependent only on the terms 𝐻𝑥, 𝐻𝑦, and 𝐸𝑧, as all the magnetic 

field components are transverse to the reference dimension 𝑧; therefore, this set of equations 

constitutes the transverse magnetic to 𝑧 case −𝑇𝑀𝑧. 

2-Dimensional TMz FDTD updating equations without PMLs 

 

To solve these equations using the FDTD method, the space is discretized into a grid of 

points, and the time is discretized into time steps. The values of Hx, Hy, and Ez at each point 

in the grid are updated at each time step based on the values of the neighbouring points, using 

finite-difference approximations of the partial derivatives. This discretized space is composed 

of cells named Yee cells. 

 

Fig.1. Yee cells for FDTD 



The FDTD updating equations for the 𝑇𝑀𝑍 case can be obtained by applying the central 

difference formula to the equations constituting the 𝑇𝑀𝑍 case based on the field positions on 

the xy plane in the z direction as follows: 

𝐸𝑧
𝑛+1(𝑖, 𝑗) = 𝐴𝑒𝑧𝑒 × 𝐸𝑧

𝑛(𝑖, 𝑗) + 𝐴𝑒𝑧ℎ𝑦 × (𝐻𝑦

𝑛+
1
2(𝑖, 𝑗) − 𝐻𝑦

𝑛+
1
2(𝑖 − 1, 𝑗))

 +𝐴𝑒𝑧ℎ𝑥 × (𝐻𝑥

𝑛+
1
2(𝑖, 𝑗) − 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 − 1))

 

Where the update coefficients for Ez are defined as: 

𝐴𝑒𝑧𝑒(𝑖, 𝑗) =
2𝜀𝑧(𝑖, 𝑗) − dt𝜎𝑧

𝑒(𝑖, 𝑗)

2𝜀𝑧(𝑖, 𝑗) + dt𝜎𝑧
𝑒(𝑖, 𝑗)

𝐴𝑒𝑧ℎ𝑦(𝑖, 𝑗) =
2dt

(2𝜀𝑧(𝑖, 𝑗) + dt𝜎𝑧
𝑒(𝑖, 𝑗))d𝑥

𝐴𝑒𝑧ℎ𝑥(𝑖, 𝑗) =  −
2dt

(2𝜀𝑧(𝑖, 𝑗) + dt𝜎𝑧
𝑒(𝑖, 𝑗))d𝑦

 

And the update equation for Hx is simplified as: 

𝐻𝑥

𝑛+
1
2(𝑖, 𝑗) = 𝐴ℎ𝑥ℎ(𝑖, 𝑗) × 𝐻𝑥

𝑛−
1
2(𝑖, 𝑗) + 𝐴ℎ𝑥𝑒𝑧(𝑖, 𝑗) × (𝐸𝑧

𝑛(𝑖, 𝑗 + 1) − 𝐸𝑧
𝑛(𝑖, 𝑗))

 

 

Where the update coefficients are: 

𝐴ℎ𝑥ℎ(𝑖, 𝑗) =
2𝜇𝑥(𝑖, 𝑗) − d𝑡𝜎𝑥

𝑚(𝑖, 𝑗)

2𝜇𝑥(𝑖, 𝑗) + d𝑡𝜎𝑥
𝑚(𝑖, 𝑗)

,

𝐴ℎ𝑥𝑒𝑧(𝑖, 𝑗) =  −
2d𝑡

(2𝜇𝑥(𝑖, 𝑗) + d𝑡𝜎𝑥
𝑚(𝑖, 𝑗))d𝑦

, 

And lastly, the update equation for Hy is: 

𝐻𝑦

𝑛+
1
2(𝑖, 𝑗) = 𝐴ℎ𝑦ℎ(𝑖, 𝑗) × 𝐻𝑦

𝑛−
1
2(𝑖, 𝑗) + 𝐴ℎ𝑦𝑒𝑧(𝑖, 𝑗) × (𝐸𝑧

𝑛(𝑖 + 1, 𝑗) − 𝐸𝑧
𝑛(𝑖, 𝑗))

 



Where the update coefficients are: 

𝐴ℎ𝑦ℎ(𝑖, 𝑗)  =
2𝜇𝑦(𝑖, 𝑗) − d𝑡𝜎𝑦

𝑚(𝑖, 𝑗)

2𝜇𝑦(𝑖, 𝑗) + d𝑡𝜎𝑦
𝑚(𝑖, 𝑗)

,

𝐴hyez (𝑖, 𝑗)  =
2d𝑡

(2𝜇𝑦(𝑖, 𝑗) + d𝑡𝜎𝑦
𝑚(𝑖, 𝑗))d𝑥

𝐴hym (𝑖, 𝑗)  = −
2d𝑡

2𝜇𝑦(𝑖, 𝑗) + d𝑡𝜎𝑦
𝑚(𝑖, 𝑗)

.

 

These equations summarize the update equations that are applied inside the solution space. 

where i and j denote the grid indices, n is the time step index, and dx and dy are the grid 

spacings in the x and y directions, respectively. However, to meet the absorptive boundary 

conditions, an additional set of equations is required to update the fields in the perfectly 

matched layers of the solutions space.  

2-Dimensional TMz FDTD updating equations with PMLs 

 

The PML updating equations can be obtained for the two-dimensional 𝑇𝑀𝑧 case by applying 

the central difference approximation to the derivatives in the modified Maxwell's equations. 

𝐸𝑧𝑥
𝑛+1(𝑖, 𝑗) = 𝐴𝑒𝑧𝑥𝑒(𝑖, 𝑗) × 𝐸𝑧𝑥

𝑛 (𝑖, 𝑗) + 𝐴𝑒𝑧𝑥ℎ𝑦(𝑖, 𝑗) × (𝐻𝑦

𝑛+
1
2(𝑖, 𝑗) − 𝐻𝑦

𝑛+
1
2(𝑖 − 1, 𝑗)), 

Where the update coefficients are: 

 

𝐴𝑒𝑧𝑥𝑒(𝑖, 𝑗) =
2𝜀0 − d𝑡𝜎𝑝𝑒𝑥(𝑖, 𝑗)

2𝜀0 + d𝑡𝜎𝑝𝑒𝑥(𝑖, 𝑗)
,

𝐴𝑒𝑧𝑥ℎ𝑦(𝑖, 𝑗) =
2d𝑡

(2𝜀0 + d𝑡𝜎𝑝𝑒𝑥(𝑖, 𝑗))d𝑥
.

𝐸𝑧𝑦
𝑛+1(𝑖, 𝑗) = 𝐴𝑒𝑧𝑦𝑒(𝑖, 𝑗) × 𝐸𝑧

𝑛(𝑖, 𝑗) + 𝐴𝑒𝑧𝑦ℎ𝑥(𝑖, 𝑗) × (𝐻𝑥

𝑛+
1
2(𝑖, 𝑗) − 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 − 1)) ,

 

Where the update coefficients are: 

𝐴𝑒𝑧𝑦𝑒(𝑖, 𝑗) =
2𝜀0(𝑖, 𝑗) − d𝑡𝜎𝑝𝑒𝑦(𝑖, 𝑗)

2𝜀0(𝑖, 𝑗) + d𝑡𝜎𝑝𝑒𝑦(𝑖, 𝑗)

𝐴𝑒𝑧𝑦ℎ𝑥(𝑖, 𝑗) = −
2d𝑡

(2𝜀0 + d𝑡𝜎𝑝𝑒𝑦(𝑖, 𝑗))d𝑦

𝐻𝑥

𝑛+
1
2(𝑖, 𝑗) = 𝐴ℎ𝑥ℎ(𝑖, 𝑗) × 𝐻𝑥

𝑛−
1
2(𝑖, 𝑗) + 𝐴ℎ𝑥𝑒𝑧(𝑖, 𝑗) × (𝐸𝑧

𝑛(𝑖, 𝑗 + 1) − 𝐸𝑧
𝑛(𝑖, 𝑗))

 

Where the update coefficients are: 



𝐴ℎ𝑥ℎ(𝑖, 𝑗) =
2𝜇0 − d𝑡𝜎𝑝𝑚𝑦(𝑖, 𝑗)

2𝜇0 + d𝑡𝜎𝑝𝑚𝑦(𝑖, 𝑗)
,

𝐴ℎ𝑥𝑒𝑧(𝑖, 𝑗) = −
2d𝑡

(2𝜇0 + d𝑡𝜎𝑝𝑚𝑦(𝑖, 𝑗))d𝑦
.

𝐻𝑦

𝑛+
1
2(𝑖, 𝑗) = 𝐴ℎ𝑦ℎ(𝑖, 𝑗) × 𝐻𝑦

𝑛−
1
2(𝑖, 𝑗) + 𝐴hyez (𝑖, 𝑗) × (𝐸𝑧

𝑛(𝑖 + 1, 𝑗) − 𝐸𝑧
𝑛(𝑖, 𝑗)),

 

Where the update coefficients are: 

𝐴hyh (𝑖, 𝑗)  =
2𝜇0 − d𝑡𝜎𝑝𝑚𝑥(𝑖, 𝑗)

2𝜇0 + d𝑡𝜎𝑝𝑚𝑥(𝑖, 𝑗)
,

𝐴hyez (𝑖, 𝑗)  =
2d𝑡

(2𝜇0 + d𝑡𝜎𝑝𝑚𝑥(𝑖, 𝑗))d𝑥
.

 

Simulations  

Now that we have derived the correct Update equations, we are able to simulate how the 

fields propagate through the solution space. The first step in performing the simulation using 

MATLAB is to define an appropriate solution space. This is performed by first picking our 

operating frequency which was set to 0.5GHz. after that, the solution grid was specified to 

have 10 wavelengths in each the x and y directions. The spatial steps dx and dy were set as 

one tenth of the wavelength to result in a 200x200 grid. Additional 20 PMLs were added to 

each side of the solution space to increase it into a 240x240 grid. The second step was to 

define the update coefficients, and initialize the fields to zero for t=0. The main program loop 

starts by updating the magnetic fields, then the electric fields, and lastly, both the magnetic 

fields and electric fields are updated in the PML layers. the Electric field is visualized at the 

end of each iteration to create an animation of how the Electric field changes with time. The 

time step was set as: 

𝑑𝑡 =
1

𝑐 ∗ √(𝑑𝑥1 + 𝑑𝑦2)
 

 

 

 

 

 

 



The program flow is summarized below: 

 

 

Fig.2. 2D FDTD program flow. 

  



Results 

The first simulation utilizes the update equations derived without setting up correct 

absorptive boundary conditions. The magnetic field in the x and y directions and electrical 

field in the z direction were initialized to zero. The time step size was defines as specified by 

the Courant–Friedrichs–Lewy convergence condition. The solution space was initialized to 

mimic vacuum conditions with the solution space being set as a 200x200 grid. A point source 

that radiates an electric field was simulated in the middle of the solution space with a 

frequency of 0.5 GHz. The grid was defined such that it has 10 wavelengths along each 

dimension with spatial step size of a tenth of the wavelength.  Fig.3 shows how the Electric 

field is reflected from the solution space’s boundaries as a result of the incorrect boundary 

conditions setup.  

 

Fig.3. Electrical field reflection due the reflection solution boundaries. 

The second simulation utilizes the revised update equations that include the correct 

absorptive boundary conditions. The same procedure was followed but with the addition of 

20 PML layer in each boundary of the solution space to create a 240x240 grid. Fig,4 shows 

how the addition of the PML layers minimizes the reflections at the boundaries.  



 

Fig.4. Electrical field absorption due to the addition of perfectly matched layers 

For the third simulation, the point source was enclosed within a horn-like structure to direct 

the electromagnetic radiation. The horn like structure was first drawn and saved as a PNG 

file, and it was then imported into the solution space, The structure was modelled as a perfect 

electrical conductor which acts as a reflective surface which guides the electromagnetic 

radiation in a specific direction. A lossy box of low conductance and a different relative 

electric permittivity=3 was added to simulate the effects of waves scattering from a medium 

of low conductance in addition to travelling through a medium of a different electric 

permittivity. Fig.5 shows how the electric field is confined to exit from the opening in the 

horn only as seen by the lower field intensities outside the horn. Further, it is clear that the 

speed of the electromagnetic field is slower inside the box due to the effects of the increase 

electrical permittivity. Lastly, it is clear that some of the electromagnetic radiation is scattered 

back by the box due to its low conductivity, and the difference in relative permittivity 

between vacuum and the lossy box. 

 

Fig.5. Horn structure and lossy box simulation  



Conclusion & Discussions  

This project aims to use computational techniques to simulate a problem in electrical 

engineering. The 2D finite difference time domain method was utilized to solve a modified 

version of maxwell’s equations to solve a transverse magnetic field 2D problem. the 

theoretical derivation for the TM mode set of partial differential equations was performed, 

and the computational update equations were derived using central difference in both the 

spatial and time domains. The update equations were then revised to include absorptive 

boundary conditions in the form of perfectly matched layers. 3 simulations were performed to 

verify that the formulated update equations work. The first simulation was of a point source 

that radiates an electrical field in the middle of the solution space without the addition of the 

PMLs. This resulted in the electromagnetic fields reflecting endlessly inside the solution 

space. The second simulation is of the same point source but with the addition of 20 PMLs in 

each of the solution space’s boundaries. The results indicate that most of the electromagnetic 

radiation is absorbed and minimal reflection is observed back into the solution space. Lastly, 

a simulation in which a horn like structure modelled as a perfect electric conductor is created 

in addition to a lossy box were added to the solution space to observe how the 

electromagnetic radiation interacts with it.  

One of the main limitations faced is that grid size had be relatively large compared to the 

wavelength of the excited point source. Hence, the resolution of the simulation is low but 

acceptable. Increasing the solution space’s dimension would result in a great increase in the 

time required to finish the simulation. However, this might have been solved if interpolation 

techniques were used to interpolate additional Yee-cells to increase the resolution. Another 

improvement that could have been made is to model the electromagnetic radiation source as a 

current/voltage that is applied to a conductive surface. This would have helped in creating a 

more realistic simulation. Lastly, exploring the 3D FDTD method would have enabled the 

simulation of real-world structures and how they interact with electromagnetic radiation.  
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