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Abstract—The recent advances in parallelized computational
power and machine learning gave rise to many machine learning
applications in the medical field. One such application is the
use of deep neural networks for segmentation. In this work,
various machine-learning models are used to perform brain
tumor segmentation using the BRATS2021 dataset. The dataset
used is composed of 1251 multi-modal brain MRI scans with their
corresponding masks that divide the MRI scan volume into 4
different segments. State-of-the-art models based on transformers
and convolutional neural networks are trained and validated on
2D slices extracted from the dataset, and the results indicate
that the SWIN-UNET transformer-based model performs the
best using 2D axial slices and that the base UNET model
performs comparably. Furthermore, the results suggest that
utilizing different models trained on different anatomical 2D
slices to create an ensembled segmentation model can increase
the robustness of segmentation.

Index Terms—Brain tumor, MRI, image segmentation, axial,
coronal, sagittal, UNET, TRANS-UNET, ATTEN-UNET, SWIN-
UNET, PSPNET, LinkNet, FPN, BRATS2021, 3D segmentation

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-ionizing
biomedical imaging modality used for numerous clinical ap-
plications. One such application is brain imaging to check for
lesions or tumors. MRI scans are created by applying a strong
static magnetic field, that can go up to 3 Tesla, to a patient
such that most of the Protons of the body part being imaged
are aligned in the same direction as the magnetic field. Further,
a secondary time-varying Radio Frequency (RF) pulse is then
applied periodically with a controlled frequency to change the
protons’ alignments temporarily to become transverse to the
strong magnetic field. The RF pulse has a repetition time (TR)
between consecutive pulses, and an echo time (TE) between
each pulse to sample the signals generated by the protons as
they are aligned back to the strong magnetic field. The time it
takes for the protons to return to their initial alignment after the
RF pulse is turned off is known as the T1-relaxation time. In
addition, auxiliary gradient coils are used to create a spatially
varying magnetic field to enable 3D brain imaging. Lastly,
image reconstruction algorithms are then used to reconstruct
a 3D image made up of voxels from the sampled signals.
Measuring the T1-relaxation times results in t1-weighted MRI
scans where tissues with short T1 relaxation times appear
bright, and tissues with long T1 relaxation times appear dark.
Furthermore, a contrast agent that contains gadolinium can be
administered to the patient to shorten the T1 relaxation time
and increase the contrast of lesions such that a T1-CE weighted
scan is created.

On the other hand, the transverse relaxation time is known
as the T2-relaxation time. A similar procedure with longer
TR and TE times helps in generating t2-weighted MRI scans.
The tissues with long T2 relaxation times appear bright in
the scan, while tissues with short T2 relaxation times appear
dark. T2-weighted scans require longer TR and TE relative
to t1-weighted scans. Furthermore, fluid-attenuated inversion
recovery (FLAIR) is a novel MRI modality in which the
signals from free water protons are suppressed by applying
two RF pulses [1]. An inversion Pulse flips all tissue protons
by 180 degrees to cancel out signals from free water protons.
An additional RF pulse that is known as the excitation pulse
is applied to rotate the protons by 90 degrees to orient them
transversely relative to the static magnetic field. The time
between the inversion and excitation pulses is known as the
inversion time, and it is optimized to be roughly equal to
the T1 relaxation time of tissue-bound protons. Thus, in
a flair-weighted MRI scan, tissues with high water content
appear dark, while tissues with low water content appear
bright. Hence, each MRI modality extracts varying information
about the brain according to how the scan is acquired. The
availability of such multi-modal Brain MRI scans plays a
crucial role in training machine learning models capable of
diagnosing patients and assessing the severity of cancerous
growth inside the brain.

II. LITERATURE REVIEW

A. Vox2Vox

In [2], Generative Adversarial Networks (GANs) were uti-
lized to perform semantic segmentation on brain tumors. The
work was inspired by the PIX2PIX model, a famous im-
plementation of image-to-image translation using GANs. The
main advantage of using GANS is that they add another layer
of punishment to unrealistic-looking segmentation masks. The
dataset utilized, the BraTs2020 contains 3D MRI brain scans
from 369 patients. For each patient, four types of MRI scans
were collected. The MRI scan volume for each modality was
fixed at 240 × 240 × 155. The approach proposed was to
treat the problem as a 3D multi-channel segmentation problem.
Each channel corresponds to one of the 4 MRI modalities
used. A smaller sub-volume of 128 × 128 × 128 × 4 was
extracted from each MRI scan to reduce the memory demand,
and various 3D augmentations were used to avoid over-fitting.
The proposed VOX2VOX model takes in this sub-volume
and performs 3D convolution for feature extraction followed
by the encoding layer. After the encoding layer, a transpose
3D convolution operation is performed to reverse the feature



extraction process and reset the volume size to the original
one. Lastly, a discriminator is added to assess the quality
of the segmentation mask generated by the generator. The
final prediction model was created by forming an ensemble
of multiple Vox2Vox models, and it was reported to have a
dice score of 93.40%.

B. UNET

UNET is a convolutional neural network designed for
biomedical imaging segmentation tasks [3]. The network
architecture includes a contracting path to capture context
and a symmetric expanding path for precise localization. To
achieve precise localization, high-resolution features from the
contracting path are combined with the upsampled output.
A successive convolution layer can then learn to assemble
a precise segmentation mask based on this information. One
important modification in the UNET architecture is that the
upsampling part has a high number of feature channels to
allow the network to propagate context information to higher-
resolution layers. As a result, the expansive path is more or less
symmetric to the contracting path and results in a U-shaped
architecture. The network does not utilize fully connected
layers, and the segmentation map only contains the pixels for
which the full context is available in the input image.

C. Atten-UNET

Islam et al. [4] proposed a novel 3D UNET with the addition
of an attention mechanism for MRI brain tumor segmentation.
Attention is a transformer used to improve the performance
of models designed to work with sequential or spatial data.
This enables machine learning models to selectively focus on
some relevant parts of the input data sequence whilst ignoring
the rest. It is reported that the model achieved promising
segmentation results with the 3D attention UNET architecture
outperforming the original UNET model. The quantitative
results for the BraTS 2019 testing set showed a mean Dice
score of 77.8%, 86,89%, and 77.71% for the Enhancing Tumor
(ET), Whole Tumor (WT), and Tumor Core (TC) sub-regions
of the tumor, respectively.

D. Trans-UNET

Chen et al. [5] proposed a UNET-like neural network
with the addition of transformers. The U-Net architecture
has been widely used for medical image segmentation, but
its convolution-based operations have limitations in explicitly
modeling long-range dependencies. On the other hand, Trans-
formers have innate global self-attention mechanisms but lack
the low-level details necessary for medical imaging. Hence,
TransUNet combines both Transformers and U-Net to provide
accurate medical image segmentation. TransUNet establishes
self-attention mechanisms from the perspective of sequence-
to-sequence prediction, leveraging the Transformer’s ability to
encode tokenized image patches from a CNN feature map as
input sequences for extracting global contexts. The encoder
encodes the image representation through multi-head self-
attention, followed by a fully connected feed-forward network.

Layer normalization is applied before each sub-layer. The
decoder then upsamples the encoded features, combining them
with high-resolution CNN feature maps to enable precise
localization similar to UNET. To evaluate the performance of
TransUNet, various medical image segmentation tasks were
tested, including multi-organ segmentation and cardiac seg-
mentation. The results show that TransUNet outperforms other
CNN-based self-attention methods, U-Net, and other CNN-
based methods.

E. Swin-Unet

In [6], a pure transformer-based neural network is proposed
for medical image segmentation. The transformer architecture
is used to attend to different parts of an input sequence paral-
lelly in contrast to recurrent neural networks in which an input
sequence is processed sequentially. Further, this parallelization
enables the model to learn dependencies between different
areas in the MRI scans more effectively. The proposed Swin-
UNET contains an encoder, bottleneck, decoder, and skip
connections. The encoder is used to transform the input images
into sequence embeddings by splitting up the images into non-
overlapping 4x4x3 patches. The patches then undergo a linear
embedding process to prepare them to be passed on to the Swin
transformer blocks. A symmetrical decoding block is used to
reverse the process in addition to the skip-ahead connections
such that the output segmentation mask is up-sampled to the
same size as the input image. Skip connections are used to
utilize the shallow features extracted at the early stages of the
neural network along with the deeper features extracted at the
later stages of the model to minimize the spatial information
loss that results from the down-sampling and up-sampling
processes. The model was trained and validated using the
Synapse multi-organ segmentation dataset and it outperformed
other models such as UNET, Atten-UNET, and Trans-UNET.

III. METHODOLOGY

Various machine learning models will be tested using the
BRATS2021 dataset [7]. The dataset contains 1251 multi-
modal scans with a 240x240x155x4 multi-channel volume
where each channel corresponds to one of the four MRI
modalities used. However, the t1-weighted scans were ignored
such that the new input shape is reduced to 240x240x155x3.
The dataset was then divided randomly to have a training
subset of 1000 scans and a validation subset of 251 scans.
Due to the limited available computational power, the 3D
segmentation task will be addressed as a 2D segmentation
task. 100 slices out of the 155 slices were taken as most
of the ignored slices had minimal information. The slices
were taken from the axial plane. In addition, each image was
further cropped to have a shape of 128x128x3 to decrease
the computational requirements. Each mentioned model was
trained for 20 epochs using the categorical cross-entropy as
a loss function. The metric used to quantify the performance
of a machine learning model doing a semantic segmentation
task is the dice loss. The dice loss quantifies the percentage



overlap between the true and predicted masks such that it has
a value between 0 and 1.

The preprocessed image dataset was utilized in 3 different
comparative studies using different machine-learning models.
In the first study, four segmentation models were tested on the
BRATS2021 dataset. The first model used is UNET as dis-
cussed above. The second model trained is the Pyramid Scene
Parsing Network (PSPNET) proposed in [8].PSPNET uses a
pyramid pooling module that captures contextual information
at multiple scales by dividing the input feature maps into fixed-
size sub-regions and applying max-pooling operations to each
sub-region. This allows the network to capture information
at different levels of abstraction, from fine-grained details to
global context. Furthermore, the third model is the Feature
Pyramid Network (FPN) proposed in [9]. FPN improves on
PSPNet by adding connections between different levels of the
feature pyramid, allowing information to flow up and down the
pyramid. This enhances the network’s capability of utilizing
multi-scale contextual information to achieve more accurate
and robust object detection and segmentation. Furthermore,
the fourth model used is LinkNET [10] which has a somewhat
similar structure to UNET. The model uses a set of encoding
and decoding blocks in addition to the use of skip connections.

The second study was performed to compare the perfor-
mance of different UNET-based transformer models [11].
UNET, Trans-UNET, Atten-UNET, and SWIN-UNET were
all trained similarly on the 2D axial MRI slices to perform
the segmentation task. Lastly, the performance of UNET
and SWIN-UNET using 2D slices from different anatomical
planes, i.e. axial, coronal, and sagittal planes, was studied to
quantify the dependency of the 2D segmentation performance
on the anatomical plane from which the slices are extracted.

IV. RESULTS

A. Basic segmentation models

PSPNET, FPN, Link-NET, and UNET are all high-level
neural network architectures used for semantic segmentation.
Hence, they can be built using well-established CNN archi-
tectures as backbones for feature extraction. The backbone
architecture used to create each segmentation model was
varied using a smaller subset of the dataset to maximize
each model’s performance. The initial results indicated that
utilizing a SERESNEXT101 backbone produced the best per-
formance for both UNET and PSPNET. On the other hand,
MobileNETV2 performed the best for the FPN model, and
EfficientnetB4 was used as a backbone for Link-NET.

The training loss for each model is summarized in Fig.1.
The training results indicate that the FPN model has the best
training performance. However, the validation data suggest
that this apparent performance advantage is only due to the
model over-fitting to the training dataset to some extent as
suggested by the validation results in Fig.2. In addition, the
validation dice coefficient corresponding to the enhancing,
edema, and necrotic tumor regions is reported separately since
the overall dice score does not provide enough information
about the models’ performance. The results indicate that

(a)

(b)
Fig. 1. (a) base models training loss, and (b)overall dice score vs epochs no..

the UNET model performs the best by a significant margin
in correctly segmenting both necrotic and enhancing tumor
regions while maintaining a small lead in segmenting edema
regions correctly.

B. UNET based architectures

For the second study, different UNET-based models were
trained for 20 epochs each. The training results summarized in
Fig.3 indicate that the base UNET model has the best training
performance as it has the lowest loss and highest overall dice
coefficient. However, the validation results plotted in Fig.4
indicate that the SWIN-UNET model performs significantly
better in segmenting the edema region of the brain tumors.
Further, the Swin-UNET model matches the performance of
the base UNET model in segmenting the enhancing tumor



Fig. 2. base models validation dice coefficients.

region, but the model struggles to identify the necrotic tumor
segment as it has poorer performance when compared to the
UNET model. A potential explanation is that the transformer-
based models struggle to identify the necrotic tumor region
since it usually has the smallest volume in the MRI scan. Thus,
utilizing a global attention approach decreases the performance
in detecting the small necrotic tumor region as extracting any
relevant features to it becomes significantly harder. This can be
solved by utilizing a more localized transformer approach or
introducing class weighting to the loss function. Nevertheless,
the Swin-UNET model maintains an almost similar perfor-
mance on both the validation and training sets whilst having
a huge improvement in segmenting edema tumor regions.

(a)

(b)
Fig. 3. (a) UNET-based models training loss, and (b)overall dice score vs
epochs no..

C. Revised Performance with different anatomical slices

For the final study, the plane from which the 2D slices are
taken was varied to quantify how the segmentation models’
performance depends on it. In the previous sections, all models
were trained using 2D slices extracted from the axial plane
of the MRI scans. The same UNET and Swin-UNET models
were retrained using 2D slices from the sagittal and coronal
planes. The validation results summarized in Fig.?? indicate
that training the base UNET model on coronal 2D slices
significantly enhanced its capability of segmenting the edema
tumor region. However, this increase is paired with some per-



Fig. 4. base models validation dice coefficients.

formance degradation in segmenting the other tumor regions.
On the other hand, using coronal slices negatively affects
the performance of the Swin-UNET model in segmenting all
three tumor regions significantly. Consequently, the anatomical
plane from which the 2D slices are taken plays a major role
in dictating the performance of the segmentation model.

Fig. 5. validation dice coefficients of UNET models trained on slices from
different 2D anatomical planes.

V. CONCLUSION

Different segmentation models were trained on 2D slices
obtained from the BRATS2021 dataset, and their performance
was compared using the dice coefficient metric. The experi-
mental results suggest that the best-performing models were
Swin-UNET and UNET when trained on 2D slices obtained
from the axial plane. In addition, the results indicate that
examining the performance of the other models with slices
from different anatomical planes can potentially produce a
partial enhancement in some of the models’ performance. An
alternative approach that could have been studied was the use
of GANs which could have enabled enhancing the resolution



of the images in addition to creating the segmentation masks.
In addition, most of the utilized transformer-based models
were used in their simplest forms with a small number of
convolutional filters and transformer layers to enable training
using the limited computational power. Hence, the Atten-
UNET and Trans-UNET models had the poorest performance
out of all the utilized models.

Although the experimental results suggest that the best-
performing models were the UNET and Swin-UNET segmen-
tation models, it must be noted that the approaches studied are
of only single models. A more realistic approach is to utilize
ensembles of different models trained for varying numbers
of epochs and with different hyper-parameters to increase the
robustness of the segmentation process. Furthermore, all of the
trained models for this project have much lower performance
compared to what is reported in the literature. This can be
attributed to the use of 2D slices instead of 3D volumes since
it reduces the amount of spatial information available to extract
features from. In addition, the performance of the trained
models could have been increased by utilizing additional
augmentation techniques such as changing the brightness of
the scans, plastic deformation, shearing, or others to generate
new input data from the existing dataset. However, this was
not pursued due to the limited computational power available.
Nevertheless, a more appropriate approach would have been
to create an ensemble of segmentation models trained on the
3D MRI scans such that the full 3D context of the scan is
maintained. The tumor segmentation could then be done using
a majority vote technique, or by assigning each model in the
ensemble a weight according to its respective performance in
segmenting the three tumor regions. In the context of 2D brain
tumor segmentation, the segmentation models can be trained
on different anatomical planes, and the final 3D tumor mask
can be reconstructed from the ensemble’s 2D output slices.
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Fig. 6. different segmentation models comparison.



  

Fig. 7. different UNET-based models segmentation comparison.



 

 

  

Fig. 8. UNET model segmentation comparison with coronal slices.


